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Abstract. We study the gluon content of a large nucleus (i) in the semi-classical McLerran–Venugopalan
model and (ii) in the high-energy limit as given by the quantum evolution of the color glass condensate. We
give a simple and qualitative description of the Cronin effect and high-pT suppression in proton–nucleus
collisions.
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1 Introduction

At high energies and/or for large atomic number A, the
wavefunction of a hadron is expected to be dominated
by a high density gluonic system. Gluons having occu-
pation numbers ϕ of order 1/αs, which is the maximal
density allowed by their mutual interactions, overlap in
phase space and saturate [1,2]. A strong classical field
is associated with the wavefunction and assumes a value
A ∼

√
a†a ∼ √

ϕ ∼ 1/g at saturation. At the same time
scattering amplitudes become of order 1 and unitarity
limits are reached [3]. The problem can be attacked by
weak coupling methods, since the non-linear phenomena
“push” gluons to occupy higher momenta, and the satu-
ration momentum Qs, which is defined as the scale where
ϕ(Qs) ∼ 1/αs, is a hard scale increasing as a power of
energy in the small Bjorken-x limit.

Presumably one of the most complete and modern ap-
proaches to saturation is the effective theory of the color
glass condensate (CGC) [4,5]. Fast moving partons have
a large lifetime due to time dilation and act as “frozen”
sources ρ for the virtual emission of softer gluons. One
solves the classical Yang–Mills equations to obtain the
color field A(ρ) and then an observable O(A) is deter-
mined by averaging over the possible color sources, with
a probability distribution WY [ρ]. Increasing the rapidity
Y = ln(1/x), more gluons need to be included in the
source, and a resummation of αsY enhanced terms in
the presence of a background field leads to a functional
renormalization group equation (RGE) for WY [ρ] [4–7].
This RGE gives an infinite hierarchy of non-linear cou-
pled equations, the so-called Balitsky equations [8]. The
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first one describes the evolution of the scattering ampli-
tude 〈Txy〉Y of a color dipole (x,y) off the CGC and reads

∂ 〈Txy〉Y

∂Y
=

ᾱs

2π
(1)

×
∫

d2z
(x − y)2

(x − z)2(z − y)2
〈Txz + Tzy − Txy − TxzTzy〉Y ,

with ᾱs =αsNc/π. The first three terms correspond to the
BFKL equation [9] in coordinate space [10], while the last
one accounts for unitarization effects. Equation (1) can be
closed by a mean field approximation, that is by allowing
the last term to factorize1, something which should be
reasonable assuming that the target is a large (A � 1)
nucleus [15].

2 Classical saturation

Classical saturation, where there is no small-x evolution,
can be realized only in a large nucleus. The A × Nc va-
lence quarks are the sources for the emission of gluons,
and in the McLerran–Venugopalan (MV) model [2] they
are assumed to be uncorrelated for transverse separations
∆x � Λ−1

QCD, so that the probability distribution is given
by the Gaussian [2,16]

WMV[ρ] ∝ exp

[
−1

2

∫ 1/Λ

d2x
ρa(x)ρa(x)

µ2
A

]
, (2)

where µ2
A = 2αsA/R2

A ∼ A1/3Λ2 is the color charge den-
sity squared, with RA the nuclear radius. Even though

1 However, this factorization is not valid in the region where
the amplitude is very small, namely when T � α2

s [11–14].
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Fig. 1. The gluon occupation number in the MV model. Thick,
solid and dashed lines show the total, CGC and BS quantities
respectively

the sources are uncorrelated, the created field A is ob-
tained from a non-linear equation. Thus, starting from its
canonical definition, the gluon occupation number ϕA is
not the one that we would obtain from a simple super-
position of the sources. When A � 1, the density can
be high, sets the magnitude of the saturation scale as
Q2

s (A) ≈ Λ2A1/3 lnA � Λ2, and we find [17]

ϕA =
1
αs

Γ(0, z) + ϕtwist
A (z), z ≡ k2/Q2

s (A), (3)

with k the transverse gluon momentum and k its magni-
tude. Here, Γ is the incomplete Gamma function, while
the explicit expression for ϕtwist

A can be found in [17].
The first term, enhanced by 1/αs, dominates for all

z � 1, as shown in Fig. 1. We interpret this compact dis-
tribution, falling exponentially at large z, as the occupa-
tion number in the CGC phase. The twist term2 contains
the bremsstrahlung spectrum (BS) ϕBS ∼ 1/z, and is im-
portant for the large-z behavior, while it remains finite as
z → 0. Due to the lack of correlations among the valence
quarks, a sum rule exists [2,18,17,19]

∫ Z

dz [ϕA(z) − ϕBS(z)] −−−−→
Z→∞

0; (4)

the integrated distribution is obtained by “summing” over
the nucleons when Q2 ≡ ZQ2

s (A) � Q2
s (A) (see Fig. 2).

Thus, the effect of the repulsive interactions in the nucleus
is just a redistribution of the gluons in momenta. The
spectra ϕA and ϕBS become equal at a scale Qc(A) such
that Λ2 
 Q2

c(A) ≈ αsQ
2
s (A) 
 Q2

s (A) and “infrared”
gluons in excess in the BS spectrum are located at k ∼
Qs(A) in the MV model. Therefore, the MV spectrum is
enhanced around the saturation scale, as shown in Fig. 1.

2 The coefficient in front of this term is {αs ln[Q2
s (A)/Λ2]}−1,

which is assumed to be equal to one. In fact, in a running
coupling treatment of the problem, this identification becomes
natural [17].
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Fig. 2. The integrated gluon distribution in the MV model.
Thick, solid and dashed lines show the total, CGC and BS
quantities respectively

As an immediate consequence, let us consider the
Cronin ratio

RpA ≡ ϕA

A1/3ϕp
=

ϕA

ϕBS
= z ϕA, (5)

with ϕp the spectrum of the proton, when this is obtained
from a simple superposition of the gluons emitted by its
valence quarks. It behaves as

RpA 
 1 if z 
 1,

RpA ∼ O(1/αs) � 1 if z ∼ 1,

RpA → 1+ if z � 1.

(6)

The ratio, shown in Fig. 3, has a maximum at zm =
0.435+O(αs) [17]. The maximal value Rmax

pA = 0.281/αs+
O(const) corresponds to a pronounced peak [17,18,20]
originating from the compact nature of the nuclear wave-
function at saturation. This value increases with A (since
1/αs ≡ lnQ2

s (A)/Λ2).
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Fig. 3. The Cronin ratio in the MV model. Thick, solid and
dotted lines show the total, CGC and twist contributions re-
spectively
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3 Quantum saturation

Now consider the evolution of a hadron to higher ener-
gies. Its wavefunction contains more and more soft glu-
ons, due to the αsY increase in the available longitudinal
phase space, and correlations among the color sources are
induced. The gluon occupation number may be obtained
from the (averaged over impact parameter) dipole–hadron
scattering amplitude as

ϕ(k, Y ) =
1
αs

∫
d2r

πr2 exp(−ik·r) T (r, Y ), (7)

where r is the dipole size. In general, one is not able to
solve (1) analytically. Only a “piecewise” expression for
αsY � 1 is known, and when translated to ϕ it reads

ϕ(k, Y ) (8)

=




1
αs

ln
Q2

s

k2 if k 
 Qs,

1
αs

(
Q2

s

k2

)γs(
ln

k2

Q2
s

+ ∆

)
if k � Qs,

Q2
0

k2 I0

(√
4ᾱsY ln

k2

Q2
0

)
if k � Qs,

where the dominant behavior of the saturation momen-
tum is Q2

s (Y ) = #Q2
s (0) exp[ᾱsχ(γs)Y/γs], with χ(γ) the

eigenvalue of the BFKL equation and γs = 0.628 the as-
sociated anomalous dimension [1,21–24]. In (8), ∆ is an
undetermined constant and I0 is a modified Bessel func-
tion of the first kind. From the first two pieces in this
equation, it is obvious that the solution exhibits geomet-
rical scaling [25,21–24,26,27] below and in a certain wide
region above Qs; it depends on k and Y only through the
combination k2/Q2

s (Y ). It is instructive to do a first step
in the non-linear evolution, valid so long as Y 
 1/αs. To
the order of accuracy and for momenta k � Qs(A, Y ), it
is enough to evolve only the compact piece in (3) which
will add a correction of order Y . This correction contains
power-law tails which are generated from the tails of the
evolution kernel. It is clear that, when Y � 1/αs all the
components will be “mixed” and, unlike the classical case,
in the quantum case there is no compact distribution for
k � Qs(Y ) and no parametric separation between the so-
lutions above and below Qs(Y ), as can be seen in (8).

The analysis of the Cronin ratio is not trivial since we
do not know the solution in the whole k–Y plane. Fur-
thermore, given a “point” in this plane, the proton and
the nucleus can be in different phases, e.g. the nucleus
could be saturated while the proton is still dilute. How-
ever, we can understand the generic important features.
(1) The proton is “less saturated” than the nucleus, since
the initial proton scale ∼ Λ2 is much smaller than the
initial nuclear one Q2

s (A), and therefore the available
transverse space for the proton is larger. Thus, the pro-
ton evolves faster than the nucleus and the ratio RpA

decreases. For example, along the particular line k =
Qs(A, Y ), one has

dRpA

dY
< 0 and RpA −−−−→

Y →∞
(αsA

−1/3)1−γs . (9)
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Fig. 4. From top to bottom, the Cronin ratio for Y =
0, 1/2, ..., 2, below and near the saturation scale. Solid lines
correspond to an evolved nuclear wavefunction and dotted to
an unevolved one

(2) For fixed Y and for extremely high momenta both
systems are dilute, described by the solution in the dou-
ble logarithmic approximation (the last piece in (8)), and
the above mentioned difference in transverse space is now
unimportant. The ratio approaches 1 from below, namely

dRpA

dk2

∣∣∣∣
k2�Q2

s (A,Y )
> 0 and RpA −−−−→

k2→∞
1−. (10)

(3) The sum rule breaks down for any Y > 0 because of
the correlations induced among the sources. The peak re-
mains for a while, since the sum rule is a sufficient but not
a necessary condition for the existence of a peak.
(4) One can follow analytically the evolution of the peak,
as shown in Fig. 4, until it becomes of order 1, since this
happens very fast due (again) to the large separation be-
tween the scales Λ2 and Q2

s (A). The nuclear wavefunction
is almost unevolved, while the proton is still dilute. One
finds

Rmax
pA = O(1) when Y = (1/4) ln2(1/αs) 
 1/αs. (11)

(5) Even though smaller than 1, a peak persists under fur-
ther evolution until Y ∼ 1/αs, when the power-law tails
will have “washed-out” the compact piece in the nuclear
wavefunction; the peak flattens out due to the nuclear evo-
lution and the ratio becomes a monotonic function of k2,
that is

dRpA

dk2 > 0 when Y � 1/αs. (12)

These features of saturation and the Cronin ratio [17] ex-
tend previous discussions [28,19], agree with the results
obtained in numerical solutions [29], and remain qualita-
tively unaltered under a running coupling treatment [17].

4 Epilogue

Saturation phenomena can play a significant role in deter-
mining the produced particle spectra in high-energy heavy
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Fig. 5. The BRAHMS data [30]: Nuclear modification factor for charged hadrons

ion collisions. In d–Au collisions at RHIC at BNL, final
state interactions are not important, and with pT and η
the transverse momentum and the (pseudo-) rapidity of
the produced particle, one probes the nuclear wavefunc-
tion at a value xAu � 2|pT| exp[−η]/

√
sNN , where

√
sNN

is the center of mass energy per nucleon. At current en-
ergies one expects to reveal classical saturation proper-
ties in the mid-rapidity region, while quantum saturation
should be realized in the forward one. Indeed, the CGC
predictions (and postdictions) seem to be in reasonable
qualitative agreement with the RHIC data [30] shown in
Fig. 5. One should keep in mind that the gluon occupa-
tion number and the particular ratio we studied are not
directly measurable quantities, and therefore any conclu-
sion drawn at the quantitative level might be misleading.
Nevertheless, more “refined” quantities like, for example,
the gluon production [19,29,31] (and the corresponding
ratio) and even the charged hadron production [32], are
directly related to the gluon occupation number and share
the same features as those presented in the previous sec-
tions. It could be very well the case that the data for the
nuclear modification factor shown in Fig. 5 correspond to
a manifestation of saturation in the nuclear wavefunction.
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